Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(4): 675-685, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509385

RESUMEN

Remote enhancers are thought to interact with their target promoters via physical proximity, yet the importance of this proximity for enhancer function remains unclear. Here we investigate the three-dimensional (3D) conformation of enhancers during mammalian development by generating high-resolution tissue-resolved contact maps for nearly a thousand enhancers with characterized in vivo activities in ten murine embryonic tissues. Sixty-one percent of developmental enhancers bypass their neighboring genes, which are often marked by promoter CpG methylation. The majority of enhancers display tissue-specific 3D conformations, and both enhancer-promoter and enhancer-enhancer interactions are moderately but consistently increased upon enhancer activation in vivo. Less than 14% of enhancer-promoter interactions form stably across tissues; however, these invariant interactions form in the absence of the enhancer and are likely mediated by adjacent CTCF binding. Our results highlight the general importance of enhancer-promoter physical proximity for developmental gene activation in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Mamíferos , Animales , Ratones , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética , Mamíferos/genética , Cromatina/genética
2.
Immunol Cell Biol ; 102(2): 131-148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184783

RESUMEN

The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Ratones , Animales , Osteogénesis/genética , Huesos , Médula Ósea , Hematopoyesis
3.
Commun Biol ; 6(1): 435, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081156

RESUMEN

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes1-3, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development. We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80 kb in size) from the genome. All deletions examined resulted in detectable molecular or organismal phenotypes, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. We observed changes in local 3D chromatin architecture in 7 of 8 (88%) cases, including the merging of TADs and altered contact frequencies within TADs adjacent to the deleted boundary. For 5 of 8 (63%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to carefully consider the potential pathogenicity of noncoding deletions affecting TAD boundaries in clinical genetics screening.


Asunto(s)
Cromatina , Genoma , Animales , Ratones , Cromatina/genética , Fenotipo
4.
Sci Adv ; 8(4): eabk0445, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089784

RESUMEN

Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the enhancer of microexons (eMIC) domain in Srrm234. In Drosophila, this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.


Asunto(s)
Proteínas de Drosophila , Empalme del ARN , Empalme Alternativo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Unión al ARN
5.
Nat Commun ; 11(1): 2631, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457347

RESUMEN

The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects.


Asunto(s)
Adaptación Fisiológica/genética , Ephemeroptera/genética , Evolución Molecular , Alas de Animales , Animales , Ephemeroptera/clasificación , Ephemeroptera/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto/genética , Genoma de los Insectos/genética , Branquias , Insectos/clasificación , Insectos/genética , Estadios del Ciclo de Vida/genética , Masculino , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...